Grade: 11 Semester: 1st and 2nd **Subject Title**: General Chemistry 1 & 2 **No. of Hours/ Semester:** 80 hours per semester **Subject Description:** Composition, structure, and properties of matter; quantitative principles, kinetics, and energetics of transformations of matter; and fundamental concepts of organic chemistry | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|--|---|--|------------------------|---| | Quarter 1 – General Chemi | stry 1 | | | _ | | | Matter and its properties 1. the particulate nature of matter | The learners
demonstrate an
understanding of: | The learners: design using | The learners: 1. recognize that substances are made up of smaller particles | STEM_GC11MP-
Ia-b-1 | | | states of matter a. the macroscopic b. microscopic view Physical and chemical properties Extensive and | the properties of
matter and its
various forms | multimedia,
demonstrations, or
models, a
representation or
simulation of any of
the following: | describe and/or make a representation of the arrangement, relative spacing, and relative motion of the particles in each of the three phases of matter | STEM_GC11MP-
Ia-b-2 | | | intensive properties 5. Ways of classifying matter a. pure substances and mixtures b. elements and | | a. atomic structure b. gas behavior c. mass relationships in d. reactions | distinguish between physical and chemical properties and give examples | STEM_GC11MP-
Ia-b-3 | Mortar and Pestle, 150 ml. capacity Spatula, porcelain Watch Glass, Ø 90mm | | compounds c. homogeneous and heterogeneous mixtures 6. Methods of separating mixtures into their component substances | | | distinguish between extensive and intensive properties and give examples | STEM_GC11MP-
Ia-b-4 | Mortar and Pestle, 150 ml.
Capacity Spatula, porcelain Sulfur Powder, 100 grams /
bottle Watch Glass, Ø 90mm | | | | | use properties of matter to identify substances and to separate them | STEM_GC11MP-
Ia-b-5 | | | | | | differentiate between pure
substances and mixtures | STEM_GC11MP-
Ia-b-6 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|--|-------------------------|--|-------------------------|--| | | | | differentiate between elements and compounds | STEM_GC11MP-
Ia-b-7 | | | | | | differentiate between homogenous and heterogenous mixtures | STEM_GC11MP-
Ia-b-8 | Laser Pointer, dual-function,
with dry cells | | | | | recognize the formulas of common chemical substances | STEM_GC11MP-
Ia-b-9 | | | | | | describe separation techniques for mixtures and compounds | STEM_GC11MP-
Ia-b-10 | Evaporating Dish, 75 ml. capacity Filter Paper, ordinary, 24" x 24" sheet Glass Funnel, Ø 50mm (Top Inside Diameter), length of stem: 75mm | | | | | 11. compare consumer products on the basis of their components for use, safety, quality and cost | STEM_GC11MP-
Ia-b-11 | | | | | | 12. (LAB) apply simple separation techniques such as distillation, chromatography | STEM_GC11MP-
Ia-b-12 | Condenser, Liebig-type with accessories Distilling Flask, 250ml | | Measurements 1. Accuracy and precision | 1. the
difference
between | | differentiate between precision and accuracy | STEM_GC11MT-
Ib-13 | , | | Significant figures in calculations Density measurement | accuracy and precision 2. different sources of errors in measuremen ts | | (LAB) Determine the density of liquids & solids | STEM_GC11MT-
Ib-14 | Balance, Triple-Beam, 2610-gram capacity Graduated cylinder, 10 ml capacity Graduated cylinder, 100 ml. capacity | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|---|-------------------------|--|-------------------------|--| | | | | | | 4. Hydrometer for heavy liquids | | | | | | | 5. Hydrometer for light liquids | | Atoms, Molecules, and Ions 1. Dalton's atomic theory 2. Basic laws of matter 3. Atomic structure | atomic
structure formulas
and names
of
compounds | | explain how the basic laws of matter (law of conservation of mass, law of constant composition, law of multiple proportion) led to the formulation of Dalton's Atomic Theory | STEM_GC11AM-
Ic-e-15 | | | 4. Subatomic particles (protons, electrons, neutrons) | | | 2. describe Dalton's Atomic Theory | STEM_GC11AM-
Ic-e-16 | | | 5. Molecules and Ions6. Chemical Formulas7. Naming Compounds | | | differentiate among atomic number, mass number, and isotopes, and which of these distinguishes one element from another | STEM_GC11AM-
Ic-e-17 | | | | | | 4. write isotopic symbols | STEM_GC11AM-
Ic-e-18 | | | | | | 5. recognize common isotopes and their uses. | STEM_GC11AM-
Ic-e-19 | | | | | | | STEM_GC11AM-
Ic-e-20 | Boric Acid, 100 grams / bottle | | | | | 6. differentiate among atoms, | | 2. Calcium Chloride, 100 grams / bottle | | | | | molecules, ions and give examples | | 3. Copper Sulfate, CuSO4, 100 grams / bottle | | | | | | | 4. Potassium Chloride, 100 grams / bottle | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|---------------------------------|-------------------------|-----|--|-------------------------|-------------------| | | | | 7. | represent compounds using chemical formulas, structural formulas and models | STEM_GC11AM-
Ic-e-21 | | | | | | 8. | give the similarities and differences
between the empirical formula and
molecular formula of a compound | STEM_GC11AM-
Ic-e-22 | | | | | | 9. | name compounds given their formula and write formula given the name of the compound | STEM_GC11AM-
Ic-e-23 | | | | | | 10. | (LAB) Practice chemical nomenclature: writing the chemical formulas of ionic compounds; naming ionic compounds from formulas | STEM_GC11AM-
Ic-e-24 | | | Stoichiometry 1. Atomic mass 2. Avogadro's number | the mole concept in relation to | | 1. | explain relative atomic mass and average atomic mass | STEM_GC11S-Ie-
25 | | | 3. The mole concept | Avogadro's number and mass | | 2. | define a mole | STEM_GC11S-Ie-
26 | | | | IIIdos | | 3. | illustrate Avogadro's number with examples | STEM_GC11S-Ie-
27 | | | | | | 4. | determine the molar mass of elements and compounds | STEM_GC11S-Ie-
28 | | | | | | 5. | calculate the mass of a given
number of moles of an element or
compound or vice versa | STEM_GC11S-Ie-
29 | | | | | | 6. | calculate the mass of a given
number of particles of an element
or compound or vice versa | STEM_GC11S-Ie-
30 | | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |----|---|---|-------------------------|----|--|-------------------------|---| | 4. | Percent composition and chemical formulas | 2. the relationship of percent composition | | 1. | calculate the percent composition of a compound from its formula | STEM_GC11PC-
If-31 | | | | | and chemical formula 2. calculate the empirical formula from the percent composition of a compound | STEM_GC11PC-
If-32 | | | | | | | | | | 3. | calculate molecular formula given
molar mass | STEM_GC11PC-
If-33 | | | | Chemical reactions and chemical equations Types of chemical | chemical
formulas to | | 4. | write equations for chemical reactions and balance the equations | STEM_GC11CR-
If-g-34 | | | | reactions in aqueous solutions | represent
chemical
reactions | | 5. | interpret the meaning of a
balanced chemical reaction in
terms of the law of conservation of
mass | STEM_GC11CR-
If-g-35 | | | | | | | 6. | describe evidences that a chemical reaction has occurred | STEM_GC11CR-
If-g-36 | Alcohol Burner, glass,
150ml. capacity Alcohol Thermometer, -20°C
to 110°C Beaker, 100 ml, borosilicate Beaker, 250 ml, borosilicate Beaker, 50 ml, borosilicate Beaker, 500 ml, borosilicate Beaker, 500 ml, borosilicate Bunsen Burner, gas-type | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---------|---------------------|-------------------------|-----------------------|------|--| | | | | | | 8. Ferrous Sulfate,100 grams / bottle | | | | | | | 9. LPG tank with gas, 11 kg. capacity, regulator & hose assembly | | | | | | | 10. Magnesium Ribbon,
minimum of 1 meter/roll | | | | | | | 11. Potassium Iodide, KI, 100 grams / bottle | | | | | | | 12. Reagent Bottle, narrow mouth amber color (250ml. Capacity) | | | | | | | 13. Reagent Bottle, wide mouth colorless (250ml. Cap.) | | | | | | | 14. Stirring Rod, Ø 6mm x 250mm long | | | | | | | 15. Sodium sulfate, 100 grams / bottle | | | | | | | 16. Sulfuric Acid, 500 ml / bottle | | | | | | | 17. Test Tube, Ø16mm x
150mm long, borosilicate | | | | | | | 18. Vials, screw neck vial with cover, 25mL | | | | | | | 19. Vials, screw neck vial with | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|--|-------------------------|--|-------------------------|---| | | | | | | cover, 50mL 20. Zinc Chloride, ZnCl2, 100 grams / bottle 21. Zinc Pellets, 100 grams / bottle | | | | | 7. (LAB) Perform exercises on writing and balancing chemical equations | STEM_GC11CR-
If-g-37 | | | 7. Mass relationships in chemical reactions | 4. the quantitative relationship of reactants and products | | construct mole or mass ratios for
a reaction in order to calculate the
amount of reactant needed or
amount of product formed in terms
of moles or mass | STEM_GC11MR- | | | | in a chemical reaction | | Calculate percent yield and theoretical yield of the reaction | STEM_GC11MR-
Ig-h-39 | | | | | | explain the concept of limiting reagent in a chemical reaction; identify the excess reagent(s) | STEM_GC11MR-
Ig-h-40 | | | | | | 4. calculate reaction yield when a limiting reagent is present | STEM_GC11MR-
Ig-h-41 | | | | | | 5. (LAB) Determine mass relationship in a chemical reaction | STEM_GC11MR-
Ig-h-42 | | | Gases | 5. the | | define pressure and give the common units of pressure | STEM_GC11G-Ih-
i-43 | | | Pressure of a gas a. Units of pressure | mathematical relationship | | 2. express the gas laws in equation form | STEM_GC11G-Ih-
i-44 | | | 2. The Gas laws a. Boyle's Law b. Charles' Law c. Avogadro's Law | between pressure, volume, and temperature | | use the gas laws to determine pressure, volume, or temperature of a gas under certain conditions of change | STEM_GC11G-Ih-
i-45 | Open U-tube Manometer (and Accessories) | | 3. Ideal Gas Equation | of a gas | | 4. use the ideal gas equation to calculate pressure, volume, | STEM_GC11G-Ih-
i-46 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|---|---|---|--------------------------|-------------------| | | | | temperature, or number of moles of a gas | | | | Dalton's Law of partial pressures | 6. the partial pressures of gases in a mixture | | use Dalton's law of partial
pressures to relate mole fraction
and partial pressure of gases in a
mixture | STEM_GC11DL-
Ii-47 | | | 5. Gas stoichiometry | 7. quantitative relationships of reactants and products in a gaseous reaction | | apply the principles of
stoichiometry to determine the
amounts (volume, number of
moles, or mass) of gaseous
reactants and products | STEM_GC11GS-
Ii-j-48 | | | | 8. the behavior | | explain the gas laws in terms of
the kinetic molecular theory of
gases | STEM_GC11KMT-
Ij-49 | | | 6. Kinetic molecular theory of gases | properties of
gases at the
molecular | | relate the rate of gas effusion with molar mass | STEM_GC11KMT-
Ij-50 | | | | level | | 9. (LAB) Demonstrate Graham's law of effusion in an experiment | STEM_GC11KMT-
Ij-51 | | | Quarter 2 – General Chemi | stry 1 | | | | | | Electronic Structure of Atoms | the quantum
mechanical | illustrate the reactions at the | describe the quantum mechanical model of the atom | STEM_GC11ES-
IIa-b-52 | | | Quantum mechanical
description of the atom Schrodinger's model of
the hydrogen atom and | description of the atom and its electronic structure | molecular level in any of the following: 1. enzyme action 2. protein | describe the electronic structure of
atoms in terms of main energy
levels, sublevels, and orbitals, and
relate this to energy | STEM_GC11ES-
IIa-b-53 | | | wave functions 3. Main energy levels, | | denaturation 3. separation of | use quantum numbers to describe an electron in an atom | STEM_GC11ES-
IIa-b-54 | | | sublevels and orbitals 4. Quantum numbers | | components in coconut milk | (LAB) Perform exercises on quantum numbers | STEM_GC11ES-
IIa-b-55 | | | 5. Electron Configuration a. Aufbau Principle | | | write the electronic configuration
of atoms | STEM_GC11ES-
IIa-b-56 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|--|-------------------------|---|---------------------------|-------------------| | b. Pauli Exclusion
Principle
c. Hund's Rule | | | determine the magnetic property of the atom based on its electronic configuration | STEM_GC11ES-
IIa-b-57 | | | d. Diamagnetism andParamagnetisme. Orbital diagrams | | | 7. draw an orbital diagram to represent the electronic configuration of atoms | STEM_GC11ES-
IIa-b-58 | | | | | | 8. (LAB) Perform exercises on writing electronic configuration | STEM_GC11ES-
IIa-b-59 | | | Periodicity 1. The Electron Configuration and the | the arrangement
of elements in
the periodic table
and trends in the | | explain the periodic recurrence of similar properties among elements in the periodic table in terms of electronic structure | STEM_GC11ESP-
IIc-d-60 | | | Periodic Table 2. Periodic Variation in Atomic Properties | properties of the elements in terms of electronic | | relate the number of valence
electrons of elements to their
group number in the periodic table | STEM_GC11ESP-
IIc-d-61 | | | a. Atomic Radius and effective nuclear | structure | | 3. compare the properties of families of elements | STEM_GC11ESP-
IIc-d-62 | | | charge; the shielding
effect in many-
electron atoms | | | 4. predict the properties of individual elements based on their position in the periodic table | STEM_GC11ESP-
IIc-d-63 | | | b. Ionic radiusc. Ionization energyd. Electron affinity | | | 5. describe and explain the trends in atomic properties in the periodic table | STEM_GC11ESP-
IIc-d-64 | | | | | | 6. (LAB) Investigate reactions of ions and apply these in qualitative analysis | STEM_GC11ESP-
IIc-d-65 | | | | | | 7. (LAB) Determine periodic properties of the main group elements | STEM_GC11ESP-
IIc-d-66 | | | Chemical Bonding Ionic Bonds | ionic bond formation in | | relate the stability of noble gases to their electron configuration | STEM_GC11CB-
IId-g-67 | | | The stability of noble gases | terms of
atomic | | 2. state the octet rule | STEM_GC11CB-
IId-g-68 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|--|-------------------------|--|--------------------------------|-------------------| | Forming ions Ionic bonding Ionic compounds Formulas Structure Properties | properties 2. the properties of ionic compounds in relation to their structure | | 3. determine the charge of the ions formed by the representative elements and relate this to their ionization energy or electron affinity, valence electron configuration and position in the periodic table | STEM_GC11CB-
IId-g-69 | | | | | | 4. draw the Lewis structure of ions | STEM_GC11CB-
IId-g-70 | | | | | | 5. predict the formula of the ionic compound formed by a metal and non-metal among the representative elements | STEM_GC11CB-
IId-g-71 | | | | | | 6. Lewis structure of ionic compounds | STEM_GC11CB-
IId-g-72 | | | | | | 7. list the properties of ionic compounds and explain these properties in terms of their structure | STEM_GC11CB-
IId-g-73 | | | | | | (LAB) Perform exercises on writing Lewis structures of ions/ionic compounds and molecules | STEM_GC11CB-
IId-g-74 | | | Covalent Bonds | 1. covalent bond | | 9. describe covalent bonding in terms | | | | Formation of covalent
bonds Formulas of molecular
compounds | formation in
terms of
atomic
properties | | of electron sharing 10. apply the octet rule in the formation of molecular covalent compounds | IId-g-75 STEM_GC11CB- IId-g-76 | | | 3. Lewis structure of molecules4. Molecules of elements5. Molecules of compounds | 2. the properties of molecular covalent compounds in | | 11. write the formula of molecular compounds formed by the nonmetallic elements of the representative block | STEM_GC11CB-
IId-g-77 | | | Structure and properties of molecular compounds | relation to
their | | draw Lewis structure of molecular covalent compounds | STEM_GC11CB-
IId-g-78 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|---------------------------------|-------------------------|--|--------------------------|-------------------| | 7. Strength of covalent bonds8. Electronegativity and | structure | 1 | 3. explain the properties of covalent molecular compounds in terms of their structure. | STEM_GC11CB-
IId-g-79 | | | bond polarity9. Geometry of molecules10. Polarity of compounds | | | 4. determine the polarity of a bond based on the electronegativities of the atoms forming the bond | STEM_GC11CB-
IId-g-80 | | | | | 1 | describe the geometry of simple
compounds | STEM_GC11CB-
IId-g-81 | | | | | | determine the polarity of simple molecules | STEM_GC11CB-
IId-g-82 | | | | | 1 | 7. (LAB) Determine and/or observe evidence of molecular polarity | STEM_GC11CB-
IId-g-83 | | | Organic compounds 1. The carbon atom | the properties of organic | | describe the special nature of
carbon | STEM_GC11OC-
IIg-j-84 | | | Bonding patterns in hydrocarbons | compounds and polymers in terms | | list general characteristics of organic compounds | STEM_GC110C-
IIg-j-85 | | | 3. Properties and reactivities of common functional groups4. Polymers5. Biomolecules | of their structure | | 3. describe the bonding in ethane, ethene(ethylene) and ethyne(acetylene) and explain their geometry in terms of hybridization and σ and ¶ carbon-carbon bonds | STEM_GC110C-
IIg-j-86 | | | | | | 4. describe the different functional groups | STEM_GC110C-
IIg-j-87 | | | | | | 5. cite uses of representative examples of compounds bearing the different functional groups | STEM_GC110C-
IIg-j-88 | | | | | | 6. describe structural isomerism; give examples | STEM_GC110C-
IIg-j-89 | | | | | | 7. describe some simple reactions of organic compounds: combustion of organic fuels, addition, condensation, and | STEM_GC110C-
IIg-j-90 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | L | EARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|---|---|-----|--|-----------------------------|--| | | | | | saponification of fats | | | | | | | 8. | describe the formation and structure of polymers | STEM_GC110C-
IIg-j-91 | | | | | | 9. | give examples of polymers | STEM_GC110C-
IIg-j-92 | | | | | | 10. | explain the properties of some polymers in terms of their structure | STEM_GC110C-
IIg-j-93 | | | | | | 11. | describe some biomolecules:
proteins, nucleic acids, lipids,
and carbohydrates | STEM_GC11OC-
IIg-j-94 | | | | | | 12. | describe the structure of proteins, nucleic acids, lipids, and carbohydrates, and relate them to their function | STEM_GC110C-
IIg-j-95 | | | | | | 13. | (LAB) Perform exercises on the structure of organic compounds using of models | STEM_GC11OC-
IIg-j-96 | | | | | | 14. | (LAB) Prepare selected organic compound and describe their properties | STEM_GC110C-
IIg-j-97 | | | | | | 15. | (LAB) Perform laboratory activities on enzyme action, protein denaturation, separation of components in coconut milk | STEM_GC11OC-
IIg-j-98 | | | Third Quarter – General Ch | | | | | | | | Intermolecular Forces and Liquids and Solids 1. Kinetic molecular | the properties of liquids and solids to the | design a simple investigation to determine the effect | 1. | use the kinetic molecular model to explain properties of liquids and solids | STEM_GC11IMF-
IIIa-c-99 | Laser Pointer, dual-function, with dry cells | | model of liquids and solids | nature of
forces | on boiling point or freezing point when a | 2. | describe and differentiate the types of intermolecular forces | STEM_GC11IMF-
IIIa-c-100 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | L | EARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|---|-----------------------------|-----|--|-----------------------------|-------------------| | Intermolecular Forces Dipole-dipole forces Ion-dipole forces | between particles 2. phase changes | solid is dissolved in water | 3. | predict the intermolecular forces possible for a molecule | STEM_GC11IMF-
IIIa-c-101 | | | Dispersion forces Hydrogen bonds Properties of liquids and IMF Surface Tension Viscosity Vapour pressure, boiling point | in terms of the accompanying changes in energy and forces between particles | | 4. | describe the following properties of liquids, and explain the effect of intermolecular forces on these properties: surface tension, viscosity, vapor pressure, boiling point, and molar heat of vaporization | STEM_GC11IMF-
IIIa-c-102 | | | Molar heat of vaporization Structure and | | | 5. | explain the properties of water with its molecular structure and intermolecular forces | STEM_GC11IMF-
IIIa-c-103 | | | Properties of Water 13. Types and properties of solids | | | 6. | describe the difference in structure of crystalline and amorphous solids | STEM_GC11IMF-
IIIa-c-104 | | | 14. Crystalline and amorphous solids15. Types of Crystals – ionic, covalent, | | | 7. | describe the different types of crystals and their properties: ionic, covalent, molecular, and metallic. | STEM_GC11IMF-
IIIa-c-105 | | | molecular, metallic 16. Phase Changes - phase diagrams of water and carbon dioxide | | | 8. | describe the nature of the following phase changes in terms of energy change and the increase or decrease in molecular order: solid-liquid, liquid-vapor, and solid-vapor | STEM_GC11IMF-
IIIa-c-106 | | | | | | 9. | interpret the phase diagram of water and carbon dioxide | STEM_GC11IMF-
IIIa-c-107 | | | | | | 10. | (LAB) Measure and explain the difference in the viscosity of some liquids | STEM_GC11IMF-
IIIa-c-108 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARI | NING COMPETENCIES | CODE | SCIENCE EQUIPMENT | | | |---|--|-------------------------|-------------------------|--|---|---|----------------------------|-------------------| | | | | the | AB) Determine and explain the heating and cooling curve a substance | STEM_GC11IMF-
IIIa-c-109 | | | | | Physical Properties of Solutions | properties of solutions, | | | scribe the different types of utions | STEM_GC11PP-
IIId-f-110 | Electrical Conductivity
Apparatus | | | | Energy of solution formation Concentration Units and comparison of concentration units | formation reactions in solutions and comparison of | | exp
soli
mo
mo | e different ways of pressing concentration of utions: percent by mass, all lity, percent by volume, reent by mass, ppm | STEM_GC11PP-
IIId-f-111 | | | | | a. percent by mass, by volumeb. mole fractionc. molality | | | cal | form stoichiometric culations for reactions in ution | STEM_GC11PP-
IIId-f-112 | | | | | c. molality d. molarity e. percent by volume, percent by mass, | у | roperties olyte and | 2, | | ten | plain the effect of
nperature on the solubility of
olid and of a gas | STEM_GC11PP-
IIId-f-113 | | | ppm 4. Solution stoichiometry | | | | | plain the effect of pressure
the solubility of a gas | STEM_GC11PP-
IIId-f-114 | | | | 5. Factors affecting
Solubility6. Colligative Properties | | | ty
ive Properties | olubility olligative Properties | cor | scribe the effect of
ncentration on the colligative
operties of solutions | STEM_GC11PP-
IIId-f-115 | Osmosis Apparatus | | of Nonelectrolyte and electrolyte solutions | | | pro
solu | erentiate the colligative operties of nonelectrolyte utions and of electrolyte utions | STEM_GC11PP-
IIId-f-116 | Ammonium Chloride, 100 grams
/ bottle | | | | | | | and
froi | culate boiling point elevation
d freezing point depression
m the concentration of a
ute in a solution | STEM_GC11PP-
IIId-f-117 | | | | | | | | | culate molar mass from
ligative property data | STEM_GC11PP-
IIId-f-118 | | | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | L | EARNING COMPETENCIES | CODE | | SCIENCE EQUIPMENT | |--|---------------------|-------------------------|-----|---|----------------------------|----|--| | | | | | | | 1. | Burette, 25ml. Capacity (acid) | | | | | | | | 2. | Burette, 25ml. Capacity (base) | | | | | | | | 3. | Erlenmeyer Flask, 250 ml.,
borosilicate | | | | | 10. | (LAB) Perform acid-base
titration to determine
concentration of solutions | STEM_GC11PP-
IIId-f-119 | 4. | Graduated Pipette, 10ml.
Cap. with rubber pipettor | | | | | | | | 5. | Lye (NaOH), odorless white
semi-transparent solids, 250
grams / bottle | | | | | | | | 6. | Phenolphthalein Indicator,
100 grams/bottle | | | | | | | | 7. | Volumetric Flask, 250ml. | | | | | 11. | (LAB) Determine the solubility of a solid in a given amount of water at different temperatures | STEM_GC11PP-
IIId-f-120 | | | | | | | 12. | (LAB) Determine the molar | | | | | | | | | mass of a solid from the change | STEM_GC11PP- | | | | | | | | of melting point or boiling point of a solution | IIId-f-121 | | | | Thermochemistry | energy changes | | 1. | explain the energy changes | STEM_GC11TC- | | | | 1. Energy Changes in | in chemical | | | during chemical reactions | IIIg-i-122 | | | | Chemical Reactions: | reactions | | | | | 1. | Calorimeter | | exothermic and endothermic processes 2. First Law of Thermodynamics | | | 2. | distinguish between exothermic and endothermic processes | STEM_GC11TC-
IIIg-i-123 | 2. | Lye (NaOH), odorless white
semi-transparent solids, 250
grams / bottle | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|---|-------------------------|--|-------------------------------|---| | 3. Enthalpy of a Chemical Reaction | | | explain the first law of thermodynamics | STEM_GC11TC-
IIIg-i-124 | | | thermochemical equations | | | 4. explain enthalpy of a reaction | STEM_GC11TC-
IIIg-i-125 | | | Calorimetry Standard Enthalpy of | | | 5. Write the thermochemical equation for a chemical reacti | on STEM_GC11TC- | | | Formation and Reaction
Hess' Law | | | 6. Calculate the change in enthalpy of a given reaction using Hess Law | STEM_GC11TC-
IIIg-i-127 | | | | | | 7. (LAB) Do exercises on thermochemical calculations | STEM_GC11TC-
IIIg-i-128 | | | | | | 8. (LAB) Determine the heat of neutralization of an acid | STEM_GC11TC-
IIIg-i-129 | Calorimeter Hydrochloric Acid, HCl, technical grade, 500 ml / bottle Lye (NaOH), odorless white semi-transparent solids, 250 grams / bottle | | Chemical Kinetics 1. The Rate of a Reaction | The rate of a reaction and | | 1. describe how various factors influence the rate of a reaction | STEM_GC11CK-
n IIIi-j-130 | | | Factors that influence reaction rate The Rate Law and its components | the various
factors that
influence it
2. the collision | | write the mathematical relationship between the rate a reaction, rate constant, and concentration of the reactants | of STEM_GC11CK-
IIIi-j-131 | | | 4. Collision theory5. Catalysis | theory | | 3. differentiate zero, first-, and second-order reactions | STEM_GC11CK-
IIIi-j-132 | | | | | | 4. write the rate law for first-ord reaction | er STEM_GC11CK-
IIIi-j-133 | | | | | | 5. discuss the effect of reactant concentration on the half-time of a first-order reaction | STEM GC11CK- | | | | | | 6. explain the effect of temperature on the rate of a | STEM_GC11CK-
IIIi-j-135 | Alcohol Burner, glass, 150ml. capacity | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|---------------------------------|---|--|----------------------------|---| | | | | reaction | | 2. Bunsen Burner, gas-type 3. LPG tank with gas, 11 kg. capacity, regulator & hose assembly | | | | | 7. explain reactions qualitatively in terms of molecular collisions | STEM_GC11CK-
IIIi-j-136 | | | | | | explain activation energy and how a catalyst affects the reaction rate | STEM_GC11CK-
IIIi-j-137 | Manganese Dioxide, 50 grams / bottle | | | | | cite and differentiate the types
of catalysts | STEM_GC11CK-
IIIi-j-138 | | | | | | 10. (LAB) Determine the effect of various factors on the rate of a reaction | STEM_GC11CK-
IIIi-j-139 | | | Fourth Quarter – General C | Chemistry 2 | | | | | | Chemical
Thermodynamics | spontaneous
change, entropy, | prepare a poster on a specific application of | predict the spontaneity of a
process based on entropy | STEM_GC11CT-
IVa-b-140 | | | Spontaneous processes Entropy The Second Law of
Thermodynamics Gibbs Free Energy and
Chemical Equilibrium | and free energy | one of the following: a. Acid-base equilibrium b. Electrochemist ry | determine whether entropy increases or decreases if the following are changed: temperature, phase, number of particles | STEM_GC11CT-
IVa-b-141 | | | Chemical Equilibrium | | Include in the poster the concepts, principles, and | explain the second law of thermodynamics and its significance | STEM_GC11CT-
IVa-b-142 | | | | | chemical reactions
involved, and
diagrams of | use Gibbs' free energy to determine the direction of a reaction | STEM_GC11CT-
IVa-b-143 | | | Chemical Equilibrium 1. The equilibrium | Chemical equilibrium and | processes and other
relevant materials | describe reversible reactions | STEM_GC11CE-
IVb-e-144 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---|-----------------------------|-------------------------|--|---------------------------|-------------------| | condition 2. Writing the reaction quotient/equilibrium | Le Chatelier's
Principle | | explain chemical equilibrium in terms of the reaction rates of the forward and the reverse reaction | STEM_GC11CE-
IVb-e-145 | | | constant expression 3. Predicting the direction of a reaction | | | write expressions for the reaction quotient/equilibrium constants | STEM_GC11CE-
IVb-e-146 | | | Significance of the equilibrium constant | | | explain the significance of the value of the equilibrium constant. | STEM_GC11CE-
IVb-e-147 | | | 5. Le Chatelier's Principle | | | 5. calculate equilibrium constant and the pressure or concentration of reactants or products in an equilibrium mixture | STEM_GC11CE-
IVb-e-148 | | | | | | 6. state the Le Chatelier's principle and apply it qualitatively to describe the effect of changes in pressure, concentration and temperature on a system at equilibrium | STEM_GC11CE-
IVb-e-149 | | | | | | 7. (LAB) Describe the behavior of reversible reactions | STEM_GC11CE-
IVb-e-150 | | | | | | 8. (LAB) Describe the behavior of a reaction mixture when the following takes place: a. change in concentration of reactants or products b. change in temperature | STEM_GC11CE-
IVb-e-151 | | | | | | (LAB) Perform calculations involving equilibrium of gaseous reactions | STEM_GC11CE-
IVb-e-152 | | | Acid-Base Equilibria and Salt Equilibria | acid-base equilibrium | | define Bronsted acids and bases | STEM_GC11AB-
IVf-g-153 | | | Bronsted acids and bases | and its applications | | discuss the acid-base property of water | STEM_GC11AB-
IVf-g-154 | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |--|--|-------------------------|-----|---|---------------------------|---| | 2. The acid-base properties of water | to the pH of solutions and | | 3. | define pH | STEM_GC11AB-
IVf-g-155 | | | 3. pH- a measure of acidity4. Strength of acids and bases5. Weak acids/weak bases | the use of
buffer
solutions
2. solubility | | 4. | calculate pH from the concentration of hydrogen ion or hydroxide ions in aqueous solutions | STEM_GC11AB-
IVf-g-156 | | | and ionization constants6. Relationship between the ionization constants of acids and their | equilibrium
and its
applications | | 5. | determine the relative strength of
an acid or a base, from the value
of the ionization constant of a
weak acid or base | STEM_GC11AB-
IVf-g-157 | | | conjugate bases 7. The Common Ion Effect 8. Buffer solutions 9. Solubility equilibria | | | 6. | determine the pH of a solution of weak acid or weak base | STEM_GC11AB-
IVf-g-158 | pH Meter, range 0 to 14 pH Universal pH Paper, ph 0-
14, 100 strips/pack | | | | | 7. | explain the Common Ion Effect | STEM_GC11AB-
IVf-g-159 | | | | | | 8. | describe how a buffer solution
maintains its pH | STEM_GC11AB-
IVf-g-160 | | | | | | 9. | calculate the pH of a buffer solution using the Henderson-Hasselbalch equation | STEM_GC11AB-
IVf-g-161 | | | | | | 10. | explain and apply the solubility product constant to predict the solubility of salts | STEM_GC11AB-
IVf-g-164 | | | | | | 11. | describe the common ion effect on the solubility of a precipitate | STEM_GC11AB-
IVf-g-165 | | | | | | 12. | explain the effect of pH on the solubility of a precipitate | STEM_GC11AB-
IVf-g-166 | | | | | | 13. | (LAB) Determine the pH of solutions of a weak acid at different concentrations and in the presence of its salt | STEM_GC11AB-
IVf-g-167 | pH Meter, range 0 to 14 pH Universal pH Paper, ph 0-
14, 100 strips/pack Zinc Nitrate, 100 grams /
bottle | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | | | | | |--|--|-------------------------|--|--|--|--|---------------------------|---|---------------------------|--| | | | | | (LAB) Determine the behavior of the pH of buffered solutions upon the addition of a small amount of acid and base | STEM_GC11AB-
IVf-g-168 | | | | | | | Electrochemistry 1. Redox reactions 2. Galvanic cells | Redox reactions
as applied to
galvanic and | | 1. | define oxidation and reduction reactions | STEM_GC11AB-
IVf-g-169 | | | | | | | 3. Standard reduction potentials4. Spontaneity of redox reactions | electrolytic cells | | 2. | balance redox reactions using the change in oxidation number method | STEM_GC11AB-
IVf-g-170 | | | | | | | 5. Batteries6. Corrosion7. Electrolysis | | | osion | | | | 3. | draw the structure of a galvanic cell and label the parts | STEM_GC11AB-
IVf-g-171 | | | | | | | | 4. | identify the reaction occurring in the different parts of the cell | STEM_GC11AB-
IVf-g-172 | | | | | | | | 5. | write the half-equations for the reactions occurring in the electrodes | STEM_GC11AB-
IVf-g-173 | | | | | | | | | 6. | write the balanced overall cell reaction | STEM_GC11AB-
IVf-g-174 | | | | | | | | | | | | 7. | give different examples of galvanic cell | STEM_GC11AB-
IVf-g-175 | | | | | | | | 8. | 8. | define reduction potential,
oxidation potential, and cell
potential | STEM_GC11AB-
IVf-g-176 | | | | | | | | | | 9. | describe the standard hydrogen electrode | STEM_GC11AB-
IVf-g-177 | | | | | | | CONTENT | CONTENT
STANDARD | PERFORMANCE
STANDARD | LEARNING COMPETENCIES | CODE | SCIENCE EQUIPMENT | |---------|---------------------|-------------------------|---|---------------------------|---| | | | | 10. calculate the standard cell potential | STEM_GC11AB-
IVf-g-178 | | | | | | 11. relate the value of the cell potential to the feasibility of using the cell to generate an electric current | STEM_GC11AB-
IVf-g-179 | | | | | | 12. describe the electrochemistry involved in some common batteries: a. leclanche dry cell b. button batteries c. fuel cells d. lead storage battery | STEM_GC11AB-
IVf-g-180 | | | | | | 13. apply electrochemical principles to explain corrosion | STEM_GC11AB-
IVf-g-181 | | | | | | 14. explain the electrode reactions during electrolysis | STEM_GC11AB-
IVf-g-182 | Electrolysis Apparatus,
Hoffman-type | | | | | 15. describe the reactions in some commercial electrolytic processes | STEM_GC11AB-
IVf-g-183 | | | | | | 16. (LAB) Determine the potential and predict the cell reaction of some assembled electrochemical cells | STEM_GC11AB-
IVf-g-184 | | | | | | 17. (LAB) Describe the reactions at the electrodes during the electrolysis of water; cite the evidence for your conclusion | STEM_GC11AB-
IVf-g-185 | Electrolysis Apparatus,
Hoffman-type | #### **Code Book Legend** ${\bf Sample: STEM_GC11AB\text{-}IVf\text{-}g\text{-}183}$ | LEGI | END | SAMPLE | | |---|---|--|-------------| | Eirct Entry | Learning Area and
Strand/ Subject or
Specialization | Science, Technology,
Engineering and Mathematics
General Chemistry | | | First Entry | Grade Level | Grade 11 | STEM_GC11AB | | Uppercase
Letter/s | Domain/Content/
Component/ Topic | Acid-Base Equilibria and Salt
Equilibria | | | | | | - | | Roman Numeral
*Zero if no specific
quarter | Quarter | Fourth Quarter | IV | | Lowercase Letter/s *Put a hyphen (-) in between letters to indicate more than a specific week | Week | Weeks six to seven | f-g | | | | | - | | Arabic Number | Competency | describe the reactions in some commercial electrolytic processes | 183 | | DOMAIN/ COMPONENT | CODE | |--|------| | Matter and Its Properties | MP | | Measurements | MT | | Atoms, Molecules and Ions | AM | | Stoichiometry | S | | Percent Composition and Chemical Formulas | PC | | Mass Relationships in Chemical Reactions | MR | | Chemical reactions and chemical equations | CR | | Gases | G | | Dalton's Law of partial pressures | DL | | Gas stoichiometry | GS | | Kinetic molecular theory of gases | KMT | | Electronic Structure of Atoms | ES | | Electronic Structure and Periodicity | ESP | | Chemical Bonding | СВ | | Organic compounds | OC | | Intermolecular Forces and Liquids and Solids | MF | | Physical Properties of Solutions | PP | | Thermochemistry | TC | | Chemical Kinetics | CK | | Chemical Thermodynamics | СТ | | Chemical Equilibrium | CE | | Acid-Base Equilibria and Salt Equilibria | AB | #### **References:** Bucat, R.B., Supervising ed. Elements of Chemistry: Earth, Air, Fire & Water, Vol. 1. Canberra City: Australian Academy of Science, 1983. Bucat, R.B., Supervising ed. Elements of Chemistry: Earth, Air, Fire & Water, Vol. 2. Canberra City: Australian Academy of Science, 1984. Chang, Raymond. Chemistry, 6 th ed. Boston, MA: McGraw-Hill, 1998. Houghton Mifflin, 2002. Kotz, John C, Treichel, Paul M., and Patrick Harman. Chemistry & Demical Reactivity, 5 th ed. Australia: Thomson, 2003. Zumdahl, Steven. Chemical Principles, 4th ed. Boston: